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Goal

We wish to find the reason underlying the appearance of
certain semantic universals throughout natural language.
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Previous work

One proposal posited in the literature: the learnability
hypothesis.

Steinert-Threlkeld and Szymanik (2019)1 have found evidence
supporting the learnability hypothesis in the domain of
quantifier expressions: neural networks find it easier to learn
quantifiers satisfying certain semantic universals.

1S. Steinert-Threlkeld and J. Szymanik (2019). “Learnability and semantic
universals”. In: Semantics and Pragmatics 12 (4).
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Previous work

Figure 1: Learning curves from Steinert-Threlkeld and Szymanik (2019)
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Previous work

Building upon these findings, van de Pol, Steinert-Threlkeld,
and Szymanik (2019)2 (henceforth called vdP&ST&S) have
found evidence for the hypothesis that the presence of some
semantic universals can also be explained by differences in
complexity among quantifiers.

2I. van de Pol, S. Steinert-Threlkeld, and J. Szymanik (2019). “Complexity and
learnability in the explanation of semantic universals”. In: Proceedings of
the 41st Annual Meeting of the Cognitive Science Society, pp. 3015–3021.
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Previous work

Figure 2: Complexity curves from vdP&ST&S
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Previous work

Though their results are promising, both of their approaches
lack generality due to their use of the minimal pair
methodology.

We should upscale their approach!

6
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In this talk, I will give an overview of my findings on the
explanatory power of complexity for the presence of semantic
universals, using an upscaled version of the approach taken by
vdP&ST&S.3

3Along with some theoretical analysis towards the end!
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Upscaling

This upscaling is done in two ways.

First, I do away with the minimal pair methodology, and
instead measure the complexity of a large variety of logically
possible quantifiers.

Second, I use the more general notion of the degree to which a
universal is satisfied by a quantifier (as introduced by Carcassi,
Steinert-Threlkeld, and Szymanik (2019)4), instead of the
standard binary notion of satisfaction.
4F. Carcassi, S. Steinert-Threlkeld, and J. Szymanik (2019). “The emergence of
monotone quantifiers via iterated learning”. In: Proceedings of the 41st
Annual Meeting of the Cognitive Science Society, pp. 190–196.
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Let us first recap briefly on the relevant definitions.
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Determiners

We consider quantifiers to be the semantic objects expressed
by determiners, i.e. binary relations between sets of objects.
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Generalised quantifiers

This is captured within the framework of generalised quantifier
theory5 as stating that determiners are type ⟨1, 1⟩ generalised
quantifiers.

Definition
A type ⟨1, 1⟩ generalised quantifier Q is a set consisting of
models M = ⟨M,A,B⟩, where A, B and M are sets such that
A,B ⊆ M ̸= ∅.

From now on, we just refer to these as quantifiers.

5S. Peters and D. Westerståhl (2006). Quantifiers in Language and Logic.
Oxford: Clarendon Press. isbn: 9780 199291250.
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Generalised quantifiers

Given a model M = ⟨M,A,B⟩, we refer to M, A and B as the
domain of discourse, restrictor, and scope of M, respectively.

If M ∈ Q, we say that within the domain of discourse M, the
quantifier represented by Q applied to the restrictor A and
scope B is satisfied, and we write QM(A,B) = 1. Similarly:
QM(A,B) = 0 if M ̸∈ Q.

12
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Extensionality

As an example, the representation of the natural language
determiner ‘all’ as a formal quantifier is

all = {⟨M,A,B⟩ ; A ⊆ B}.

The definition of this quantifier, like that of any in natural
language, does not contain any reference to M - it is
extensional.
Definition
A quantifier Q is called extensional if for all sets
A,B ⊆ M ⊆ M′, it holds that QM(A,B) = QM′(A,B).

13
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Semantic universals

There are three (categories of) semantic universals which we
consider: monotonicity, quantitavitiy, and conservativity.

14



Introduction Quantifiers & universals Degrees Complexity Methods Results Degree robustness Future work

Monotonicity

Definition
A quantifier Q is called upward (right) monotone if for any
sets A ⊆ M and B ⊆ B′ ⊆ M, it holds that QM(A,B) ⩽ QM(A,B′).
Similarly, Q is called downward (right) monotone if for any
A ⊆ M and B′ ⊆ B ⊆ M, it holds that QM(A,B) ⩽ QM(A,B′).

Most is upward monotone, while an even number of is not
monotone at all.
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Quantitativity

Definition
A quantifier Q is called quantitative if whenever we have
|A ∩ B| = |A′ ∩ B′|, |A \ B| = |A′ \ B′|, |B \ A| = |B′ \ A′|, and
|M \ (A ∪ B)| = |M′ \ (A′ ∪ B′)|, then QM(A,B) = QM′(A′,B′).

Some is quantitative, while the first three is not.

16
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Conservativity

Definition
A quantifier Q is called (left) conservative if it always holds
that QM(A,B) = QM(A,A ∩ B).

All is conservative, while the hypothetical determiner EQ,
expressing that the restrictor and scope are equal in size, is
not.

Conservativity is interesting: it is difficult to even express
complex non-conservative determiners in natural language.
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Fine-grained distinctions

We have a binary notion of satisfaction for universals. This
does not allow us to distinguish between quantifiers that do
not satisfy a universal, even though intuitively, e.g. at least
three satisfies monotonicity to a higher degree than an even
number of .

18
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Information-theoretical degrees

Carcassi, Steinert-Threlkeld, and Szymanik (2019) and Posdijk
(2019)6 have defined the notion of the degree to which a
quantifier satisfies a universal. This definition is based on
information theory, and (informally!) boils down to the
normalised mutual information between the quantifier and
the universal.

6W. Posdijk (2019). “The influence of the simplicity / informativeness
trade-off on the sematic typology of quantifiers”. Master’s thesis.
Universiteit van Amsterdam.
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Formal definition

To facilitate theoretical analysis, we give a general and formal
definition of the degree to which a quantifier is explained by
some measure on models. The degrees of universals are
specific instances of this definition.

Let us work through the preliminaries.
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Models as strings

Assuming that we only consider finite models with objects
from some countably infinite universe U = {oi ; i ∈ ω}, there is
a natural correspondence between models and quaternary
strings (i.e. strings α ∈ 4+), since any x ∈ M must be in exactly
one of the sets A ∩ B, A \ B, B \ A, and M \ (A ∪ B).

21
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Quantifiers as random variables

Some notation: let M be the class of all models, and M⩽n of
those of size up to n.

For each n, we can place a uniform probability distribution
over M⩽n. This allow us to view quantifiers Q as random
variables 1Q,n : M⩽n → 2.
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Degrees of explanation

We can now define the degrees!

Definition
Given some n, a quantifier Q, and some measure X : M → X ,
the n-th degree of explanation of Q by X is defined as

degXn(Q) := 1− H(1Q,n | Xn)
H(1Q,n)

,

where H is the (conditional) Shannon entropy, and Xn is
defined as the random variable obtained by restricting X to
M⩽n.

23



Introduction Quantifiers & universals Degrees Complexity Methods Results Degree robustness Future work

Degrees of universals

Using this general definition, we can define degrees of
universals by finding measures corresponding to the
universals. For (upward right) monotonicity, quantitativity and
(left) conservativity, respectively, we define the following
measures on a model M = ⟨M,A,B⟩:

• for each quantifier Q, a binary measure 1 �
Q defined as

1
�
Q (M) = 1 iff there is someM′ = ⟨M,A,B′⟩ with B′ ⊆ B

and QM(A,B′) = 1
• a measure # defined as
#(M) = ⟨|A ∩ B|, |A \ B|, |B \ A|, |M \ (A ∪ B)|⟩

• a measure ↾� defined as ↾�(M) = ⟨M,A,A ∩ B⟩

24
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Degrees of universals

It is easily verified that the degree for some universal is equal
to 1 for a quantifier if and only if that quantifier satisfies the
universal. So this works.

Or does it? Note that degrees are parameterised by the
maximum model size n. Do degrees stabilise as n increases?
We will consider this question again towards the end.
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Kolmogorov complexity

The notion of complexity used by vdP&ST&S is that of
(approximate) Kolmogorov complexity, from the field of
algorithmic information theory.

This measures how well some sequence of symbols can be
compressed by exploiting patterns and structures in the
sequence. More complexity equals less structure.

26
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Quantifiers as streams

To be able to apply this to quantifiers, we need another
representation for them.

Using the correspondence between models and strings, we
obtain a natural correspondence between quantifiers and
infinite binary streams (i.e. streams β ∈ 2ω), since we can
lexicographically order models.

27
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Kolmogorov complexity

Since we can only really compute the approximate Kolmogorov
complexity of finite strings, we need to work with finite parts of
a quantifier’s binary stream.

We define the n-th complexity value of a quantifier Q to be the
average approximate Kolmogorov complexity7 of the first
|M⩽n| bits in each of its binary streams (one for each possible
lexicographical ordering of the set 4)

7We use the Lempel-Ziv algorithm by Lempel and Ziv (1976) to compute this.
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Language of thought

As stated in the introduction, our goal is to measure degrees
and complexity for a wide variety of logically possible
quantifiers. We do this by way of a logical grammar producing
quantifiers (c.f. the language of thought used by Piantadosi,
Tenenbaum, and Goodman (2012)8).

Taking computational and practical concerns into
consideration, we only produce extensional quantifiers.

8S. T. Piantadosi, J. B. Tenenbaum, and N. D. Goodman (2012). “Modeling the
acquisition of quantifier semantics: a case study in function word
learnability”.
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Language of thought

START →λ a b . BOOL
BOOL → (SET = ∅) | (SET ̸= ∅)

| (SET ⊆ SET) | (SET ⊈ SET)
| (SET ⊂ SET) | (SET ̸⊂ SET)
| (card(SET) is even) | (card(SET) is odd)
| (card(SET) = card(SET))
| (card(SET) ̸= card(SET))
| (card(SET) ⩾ card(SET))
| (card(SET) > card(SET))
| (card(SET) = n) | (card(SET) ̸= n)
| (card(SET) ⩾ n) | (card(SET) ⩽ n)
| (BOOL and BOOL) | (BOOL or BOOL)

SET →ORDER | (SET \ SET)
| (SET ∩ SET) | (SET ∪ SET)

ORDER → a | b | (first n of ORDER) | (last n of ORDER)

Figure 3: Non-terminals are colored, and n ranges over the positive
integers. 30
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Primitives

This grammar contains a lot of primitive notions, and does not
explicitly contain negation. This is due to computational
considerations: we want the grammar to produce a large
amount of semantically distinct and interesting quantifiers,
within reasonable time.
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Quantifier generation

Using our grammar (with the variable n ranging from 1 to 10),
we generate quantifiers by considering all productions at a
maximum depth of 6. By comparing the quantifiers’ binary
streams, we can ensure that we only consider semantically
unique quantifiers.

This process gives us 8044 quantifiers.
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Statistic computation

For each quantifier, we then compute the 10-th degrees of
monotonicity, quantitativity and conservativity, along with the
10-th complexity value.
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Statistic distributions
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Correlations

To determine how well complexity explains a universal, we
perform two types of correlation analysis with complexity as
the independent and the degree of the universal as the
dependent variable. We also perform these analyses for some
statistics derived from the degrees.

We compute both R2 and Kendall’s τ9, along with 95%
confidence intervals for both.10

9This is the version described by Kendall (1945)
10These confidence intervals were obtained through non-parametric
bootstrapping.
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Linear regression
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R2 and τ

Table 1: The values of R2 and τ for a selection of the statistics. The
95% confidence intervals of each statistic are given within
parentheses.

Dependent variable R2 τ

Upward right monotonicity 0.013 (0.008, 0.017) -0.043 (-0.057, -0.029)
Downward right monotonicity 0.003 (0.000, 0.004) -0.023 (-0.038, -0.008)
Maximum overall monotonicity 0.027 (0.018, 0.034) -0.095 (-0.112, -0.078)
Maximum average monotonicity 0.051 (0.041, 0.059) -0.142 (-0.156, -0.128)

Quantitativity 0.040 (0.035, 0.045) 0.175 (0.161, 0.189)
Left conservativity 0.013 (0.008, 0.016) -0.069 (-0.082, -0.055)
Right conservativity 0.016 (0.011, 0.020) -0.083 (-0.097, -0.070)

Average conservativity 0.040 (0.031, 0.049) -0.147 (-0.162, -0.131)
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R2

Judging by the confidence intervals for R2, it is highly plausible
that all degrees of universals share a linear relationship with
complexity, albeit a weak one.

Statistics based on monotonicity are best explained linearly by
complexity, with R2 = 0.051. This is in line with the findings of
vdP&ST&S.

But conservativity, or at least some statistics based on it,
seems to also correlate quite strongly with complexity (with
R2 = 0.040), which was not what they found.
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τ

It gets worse when we consider τ . Quantitativity has significant
and strong positive correlation, with τ = 0.175.

But vdP&ST&S found that quantitative quantifiers do show a
tendency towards being less complex, albeit not very robustly.
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Correction

It can be verified from the regression and distribution plots
that this positive correlation stems from the overwhelming
amount of quantifiers that are fully quantitative. Same holds
for other universals.

To determine whether complexity can make fine-grained
distinctions between quantifiers when it matters - i.e. when
the quantifiers neither satisfy, nor fully contradict universals -
we perform our analysis again, this time having filtered out
extreme quantifiers.
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Corrected R2 and τ

Table 2: Values of R2 and τ , now taken for data without extreme
values.

Dependent variable R2 τ

Upward right monotonicity 0.021 (0.013, 0.026) -0.073 (-0.089, -0.057)
Downward right monotonicity 0.007 (0.002, 0.011) -0.055 (-0.073, -0.037)
Maximum overall monotonicity 0.043 (0.026, 0.056) -0.163 (-0.189, -0.137)
Maximum average monotonicity 0.050 (0.041, 0.059) -0.132 (-0.147, -0.118)

Quantitativity 0.038 (0.020, 0.052) -0.119 (-0.151, -0.089)
Left conservativity 0.001 (-0.001, 0.002) -0.004 (-0.019, 0.010)
Right conservativity 0.002 (0.000, 0.003) -0.015 (-0.029, -0.001)

Average conservativity 0.034 (0.025, 0.042) -0.134 (-0.150, -0.118)
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Quantitativity

Quantitativity no longer has any positive correlation, and
instead displays relatively strong negative correlation now
(τ = −0.119).

But similar to what vdP&ST&S found, this is not a robust
correlation: the confidence interval for both R2 and τ is larger
than that of any other statistic, even much larger for τ .

42
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Monotonicity

In the case of monotonicity, removing extreme values has only
strengthened all correlations. It appears that monotonicity is
truly explained well by complexity.
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Conservativity

Our findings for conservativity are quite different now, and are
fully in line with vdP&ST&S. The correlations for both left and
right conservativity are no longer statistically significant, with
confidence intervals passing 0.

Note that results with similar implications were also found by
Steinert-Threlkeld and Szymanik (2019) when looking at
learnability.
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Conclusion of experiments

So in conclusion, our findings indicate that the results of
vdP&ST&S do in fact generalise: complexity does explain
monotonicity, as well as quantitativity, though this latter result
is not very robust. Finally, conservativity is not explained by
complexity.
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Formal analysis

As promised, we now consider the question whether degrees
are robust, in the sense that they actually approach some
value as n increases. Answering this question for the three
degrees of universals is difficult.

As a first step towards answering this question for degrees of
universals, we have that degrees of explanation are generally
not robust.

46
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Formal analysis

Theorem
There exists a quantifier Q and a binary measure X : M → 2
for which the limit

lim
n→∞

degXn(Q)

does not exist.

Proof sketch.
Consider the quantifier Q with stream 101010 . . . , and define X
in such a way that it agrees with Q on all Q-true models of
size at least 2, while having X(M) = 1 for 1

4-th of the Q-false
models if n is even, and for 3

4-th of them if n is odd. Then we
get that limn→∞ degX2n(Q) ̸= limn→∞ degX2n+1(Q), with both of
these even and odd limits existing.
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Formal analysis

The constructions in this proof are highly artificial, and may not
have any bearing on degrees of actual universals. It is instead
an invitation to give these degrees serious consideration.
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Theoretical

• Expand upon the formal analysis: are there necessary
and/or sufficient conditions on quantifiers and/or
measures under which a degree of explanation converges?
If so, do the measures of universals satisfy those for
measures?

• Can we redefine the notion of the degree to which a
universal is satisfied in such a way that we do not
encounter any issues with convergence and model size?
Possible option is to work with non-uniform distributions
over models.

49
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Methodological

• Use balanced samples of quantifiers w.r.t. the degrees of
universals.

• Define a more natural language of thought with few
primitives, and also consider production depth as another
measure of complexity.

• Consider larger models (c.f. Steinert-Threlkeld and
Szymanik (2019), who considered models of up to size 20).

50
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Extensions

Just one important extension: reuse this approach with
learnability instead of or in addition to complexity.
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R2 and τ

Table 3: Pre-correction

Dependent variable R2 τ

Upward right monotonicity 0.013 (0.008, 0.017) -0.043 (-0.057, -0.029)
Downward right monotonicity 0.003 (0.000, 0.004) -0.023 (-0.038, -0.008)
Upward left monotonicity 0.015 (0.010, 0.019) -0.051 (-0.065, -0.036)

Downward left monotonicity 0.003 (0.000, 0.005) -0.030 (-0.045, -0.015)
Maximum right monotonicity 0.019 (0.013, 0.025) -0.094 (-0.110, -0.079)
Maximum left monotonicity 0.021 (0.015, 0.027) -0.104 (-0.120, -0.089)

Average maximum monotonicity 0.039 (0.030, 0.047) -0.143 (-0.158, -0.129)
Maximum overall monotonicity 0.027 (0.018, 0.034) -0.095 (-0.112, -0.078)
Maximum average monotonicity 0.051 (0.041, 0.059) -0.142 (-0.156, -0.128)

Quantitativity 0.040 (0.035, 0.045) 0.175 (0.161, 0.189)
Left conservativity 0.013 (0.008, 0.016) -0.069 (-0.082, -0.055)
Right conservativity 0.016 (0.011, 0.020) -0.083 (-0.097, -0.070)

Maximum conservativity 0.035 (0.024, 0.044) -0.170 (-0.187, -0.152)
Average conservativity 0.040 (0.031, 0.049) -0.147 (-0.162, -0.131)



Corrected R2 and τ

Table 4: Post-correction.

Dependent variable R2 τ

Upward right monotonicity 0.021 (0.013, 0.026) -0.073 (-0.089, -0.057)
Downward right monotonicity 0.007 (0.002, 0.011) -0.055 (-0.073, -0.037)
Upward left monotonicity 0.023 (0.015, 0.029) -0.076 (-0.092, -0.060)

Downward left monotonicity 0.007 (0.002, 0.010) -0.053 (-0.072, -0.035)
Maximum right monotonicity 0.023 (0.014, 0.030) -0.122 (-0.141, -0.104)
Maximum left monotonicity 0.023 (0.015, 0.032) -0.124 (-0.143, -0.106)

Average maximum monotonicity 0.029 (0.020, 0.036) -0.120 (-0.136, -0.104)
Maximum overall monotonicity 0.043 (0.026, 0.056) -0.163 (-0.189, -0.137)
Maximum average monotonicity 0.050 (0.041, 0.059) -0.132 (-0.147, -0.118)

Quantitativity 0.038 (0.020, 0.052) -0.119 (-0.151, -0.089)
Left conservativity 0.001 (-0.001, 0.002) -0.004 (-0.019, 0.010)
Right conservativity 0.002 (-0.000, 0.003) -0.015 (-0.029, -0.001)

Maximum conservativity 0.007 (0.002, 0.011) -0.085 (-0.104, -0.066)
Average conservativity 0.034 (0.025, 0.042) -0.134 (-0.150, -0.118)
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