Participatory Budgeting with Multiple Resources

Nima Motamed¹, <u>Arie Soeteman</u>², Simon Rey², Ulle Endriss² September 15, 2022 | EUMAS 2022 | Düsseldorf, Germany

- ¹ Intelligent Systems, Utrecht University
- 2 Institute for Logic, Language and Computation, University of Amsterdam

What's so good about PB?

Dit plan voordt uitgevoerd	Brite plan worth singevoert	Pit plan servit utgevoert	
Vergroenen openbare ruimte	Opknappen Natuurspeeltuin Nature	Bloementuin in het Sloterpark	
Geuzenveld, Slotermeer, Sloterdijken	Geuzenveld, Slotermeer, Sloterdijken	Geuzenveld, Slotermeer, Sloterdijken	
> Lees meer	> Lees meer	> Lees meer	
€ 65.000 1462 stemmen	€ 50.000 1216 stemmen	€ 5.000 1207 stemmen	
Dt plan wordt uitgevoert	De plea wordt uitgeweit	Dit plan wordt uitgevoerd	
Bijeenkomsten voor eenzame ouderen	Bewoners Restaurant Armoedebestr	Voedselbos in het Sloterpark	
Geuzenveld, Slotermeer, Sloterdijken	Geuzenveld, Slotermeer, Sloterdijken	Geuzenveld, Slotermeer, Sloterdijken	
> Lees meer	> Lees meer	> Lees meer	
€ 18.780 1000 stemmen	€ 10.000 981 stemmen	€ 20.000 948 stemmen	

1

Introducing Multiple Resources

Introducing Multiple Resources

Officials often need to interfere in the process (Goldfrank, 2007) MRPB has been recognized as an important challenge (Haris Aziz & Nisarg Shah, 2020) The 'usual' PB framework often looks like this:

- Set *P* of projects
- Cost function $c: P \rightarrow \mathbb{N}$
- Budget limit $b \in \mathbb{Z}_+$
- Each voter *i* submits some sort of ballot A_i, making a profile
 A = (A₁,..., A_n)

Project set $S \subseteq P$ is *Feasible* if $\sum_{p \in S} c(p) \leq b$

A *d*-resource *PB* scenario is a tuple $\langle P, \mathbf{c}, \mathbf{b} \rangle$:

- P is a set of projects
- c is a vector of cost functions $c_k : P \to \mathbb{N} \cup \{0\}$ for $k = 1 \dots d$
- **b** is a vector of budget limits $b_k \in \mathbb{N}$ for $k = 1 \dots d$

A set $S \subseteq P$ is *feasible* if $\sum_{p \in S} c_k(p) \leq b_k$ for all $k = 1 \dots d$. Voters $i \in \{1, ..., N\}$ submit approval ballots $A_i \subseteq P$ Approval ballots make up a *profile* $\mathbf{A} = (A_1, ..., A_n)$ **Distributional:** spend at most $\alpha \in [0, 1]$ of b_k on $X \subseteq P$

Incompatibility: not all projects in $X \subseteq P$ can be realised simultaneously

Dependency: p can only be realised if all projects in Xare realised **Distributional:** spend at most $\alpha \in [0, 1]$ of b_k on $X \subseteq P$

Incompatibility: not all projects in $X \subseteq P$ can be realised simultaneously

Dependency: p can only be realised if all projects in Xare realised Add k* with $b_{k*} = \lfloor \alpha \cdot b_k \rfloor$, and $c_{k*}(p) = \mathbb{1}_{p \in X} \cdot c_k(p)$

Add k* with $b_{k*} = |X| - 1$ and $c_{k*}(p) = \mathbb{1}_{p \in X}$

A mechanism is a function F that takes as input scenarios $\langle P, \mathbf{c}, \mathbf{b} \rangle$ and profiles A and returns feasible set $F(P, \mathbf{c}, \mathbf{b}, A) \subseteq P$ A mechanism is a function F that takes as input scenarios $\langle P, \mathbf{c}, \mathbf{b} \rangle$ and profiles A and returns feasible set $F(P, \mathbf{c}, \mathbf{b}, A) \subseteq P$

- *F*_{greedy}: Go through projects in order of approval score, adding them to the outcome set one by one while skipping projects making outcome infeasible
- *F*_{max} returns feasible set with maximal approval score

A mechanism is a function F that takes as input scenarios $\langle P, \mathbf{c}, \mathbf{b} \rangle$ and profiles A and returns feasible set $F(P, \mathbf{c}, \mathbf{b}, A) \subseteq P$

- *F*_{greedy}: Go through projects in order of approval score, adding them to the outcome set one by one while skipping projects making outcome infeasible
- *F*_{max} returns feasible set with maximal approval score
- F_{load} proceeds in steps: at each step, chooses the project minimizing the load (cost) carried by the worst-off voter

Axioms

Proportionality

All projects in set *S* are selected if for all $k \in R$: $\frac{|\{i \in N; A_i = S\}|}{n} \ge \frac{c_k(S)}{b_k}$

Weak axiom only guarantees this if |S| = 1

Axioms

Proportionality

All projects in set *S* are selected if for all $k \in R$: $\frac{|\{i \in N; A_i = S\}|}{n} \ge \frac{c_k(S)}{b_k}$

Weak axiom only guarantees this if |S| = 1

(Approximate) Strategyproofness

For truthful ballot S_i^* , $F(\mathbf{A}) \not\succ_i F(A_{-i}, S_i^*)$

Approximate: for some $p \in P$: $F(\mathbf{A}) \not\succ_i F(A_{-i}, S_i^*) \cup \{p\}$

Here we define different preferences \succ_i : prefer a Superset, or also an outcome that is better w.r.t. all resources (Paretian)

Axioms

Proportionality

All projects in set *S* are selected if for all $k \in R$: $\frac{|\{i \in N; A_i = S\}|}{n} \ge \frac{c_k(S)}{b_k}$

Weak axiom only guarantees this if |S| = 1

(Approximate) Strategyproofness

For truthful ballot S_i^* , $F(\mathbf{A}) \not\succ_i F(A_{-i}, S_i^*)$

Approximate: for some $p \in P$: $F(\mathbf{A}) \not\succ_i F(A_{-i}, S_i^*) \cup \{p\}$

Here we define different preferences \succ_i : prefer a Superset, or also an outcome that is better w.r.t. all resources (Paretian)

Actually, our definitions are parameterized by a set R of relevant resources, giving more fine-grained analysis (and slightly different definitions)

	Subset Preferences	Paretian Preferences	Paretian Preferences if $R = \{1 \dots d\}$
Greedy	\checkmark	X	\checkmark
Max	X	X	×
Load Balancing	X	X	×

Approximate Strategyproofness

	Strong	Weak
Greedy	X	X
Max	X	X
Load Balancing	V	\checkmark

Proportionality

No mechanisms are strategyproof (even for d = 1)

An impossibility result:

Theorem

Let $d \ge 1$, $m > b_k \ge 3$ for some resource k, then no mechanism can guarantee both weak proportionality and strategyproofness against Paretian voters for d-resource PB scenarios with budgets $(b_1, \ldots, b_k, \ldots, b_d)$ and m projects.

Basecase is generated using a SAT-solving approach

Computational analysis

 F_{greedy} and F_{load} are polytime computable

Computational analysis

 F_{greedy} and F_{load} are polytime computable

For F_{max} multiple decision problems:

Definition (MaxAppScore)

Instance: PB scenario $\langle P, \mathbf{c}, \mathbf{b} \rangle$, profile **A**, target $K \in \mathbb{N}$

Question: Is there feasible $S \subseteq P$ with approval score at least *K*?

(MaxAppScore_d restricts to d-resource scenarios)

 F_{greedy} and F_{load} are polytime computable

For F_{max} multiple decision problems:

Definition (MaxAppScore)

Instance: PB scenario $\langle P, \mathbf{c}, \mathbf{b} \rangle$, profile \boldsymbol{A} , target $K \in \mathbb{N}$

Question: Is there feasible $S \subseteq P$ with approval score at least K?

(MaxAppScore_d restricts to d-resource scenarios)

MaxAppScore₁ (and F_{max} in single-resource case) is polytime computable per Talmon & Faliszewski (2019);

MaxAppScore is strongly NP-hard;

MaxAppScore_d for $d \ge 2$ is weakly NP-hard, and F_{max} is pseudo-polytime computable with restriction to d

Summing up:

- Initiated the systematic study of PB with multiple resources
- New setting has significantly increased expressive power
- Mechanisms from single-resource setting largely carry over nice axiomatic & algorithmic properties

Summing up:

- Initiated the systematic study of PB with multiple resources
- New setting has significantly increased expressive power
- Mechanisms from single-resource setting largely carry over nice axiomatic & algorithmic properties

What's next?

- Strengthen the results to e.g. other voter preferences, and other notions of proportionality
- Explore the introduction of negative costs
- Eventually implement multi-resource PB in real-world PB exercises

Summing up:

- Initiated the systematic study of PB with multiple resources
- New setting has significantly increased expressive power
- Mechanisms from single-resource setting largely carry over nice axiomatic & algorithmic properties

What's next?

- Strengthen the results to e.g. other voter preferences, and other notions of proportionality
- Explore the introduction of negative costs
- Eventually implement multi-resource PB in real-world PB exercises

Thank you!

For set $R \subseteq \{1, \ldots, d\}$ of relevant resources

Build outcome *S* in rounds. At each round, add a project that maintains feasibility of outcome *S* and minimises $\max_{k \in R} y_k$, where y_k is computed by linear program with variables $x_{i,k,p}$

$$\begin{split} \min y_k \text{ where } y_k \geqslant \frac{1}{b_k} \cdot \sum_{p \in S} x_{i,k,p} \text{ for all } i \in N \text{ with} \\ \sum_{i \in N} \mathbb{1}_{p \in A_i} \cdot x_{i,k,p} = c_k(p) \text{ for all } p \in S \text{, and } x_{i,k,p} \geqslant 0 \end{split}$$

Intuitively, $x_{i,k,p}$ is the part of the cost $c_k(p)$ 'should ered' by voter i