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What’s so good about PB?
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Introducing Multiple Resources

Officials often need to interfere in the process (Goldfrank, 2007)

MRPB has been recognized as an important challenge (Haris Aziz
& Nisarg Shah, 2020)
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Usual PB framework

The ‘usual’ PB framework often looks like this:

• Set P of projects
• Cost function c : P → N

• Budget limit b ∈ Z+

• Each voter i submits some sort of ballot Ai , making a profile
A = (A1, . . . ,An)

Project set S ⊆ P is Feasible if
∑

p∈S c(p) ≤ b
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Our framework

A d-resource PB scenario is a
tuple 〈P , c,b〉:

• P is a set of projects
• c is a vector of cost

functions ck : P → N ∪ {0}
for k = 1 . . . d

• b is a vector of budget limits
bk ∈ N for k = 1 . . . d

A set S ⊆ P is feasible if∑
p∈S ck(p) 6 bk for all

k = 1 . . . d .

Voters i ∈ {1, . . . ,N} submit
approval ballots Ai ⊆ P
Approval ballots make up a
profile A = (A1, . . . ,An)
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Other constraints & relations to other frameworks

Distributional: spend at most
α ∈ [0, 1] of bk on X ⊆ P

Incompatibility: not all
projects in X ⊆ P can be
realised simultaneously

Dependency: p can only
be realised if all projects in X
are realised

Add k∗ with bk∗ = bα·bkc,
and ck∗(p) = 1p∈X · ck(p)

Add k∗ with bk∗ = |X | − 1

and ck∗(p) = 1p∈X

Add k∗ with bk∗ = 1,
ck∗(p) = |X | + 1, and
ck∗(q) = −1 for all q ∈ X
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Mechanisms

A mechanism is a function F that takes as input scenarios 〈P , c,b〉
and profiles A and returns feasible set F (P , c,b,A) ⊆ P

• Fgreedy: Go through projects in order of approval score, adding
them to the outcome set one by one while skipping projects
making outcome infeasible

• Fmax returns feasible set with maximal approval score
• Fload proceeds in steps: at each step, chooses the project

minimizing the load (cost) carried by the worst-off voter

6



Mechanisms

A mechanism is a function F that takes as input scenarios 〈P , c,b〉
and profiles A and returns feasible set F (P , c,b,A) ⊆ P

• Fgreedy: Go through projects in order of approval score, adding
them to the outcome set one by one while skipping projects
making outcome infeasible

• Fmax returns feasible set with maximal approval score

• Fload proceeds in steps: at each step, chooses the project
minimizing the load (cost) carried by the worst-off voter

6



Mechanisms

A mechanism is a function F that takes as input scenarios 〈P , c,b〉
and profiles A and returns feasible set F (P , c,b,A) ⊆ P

• Fgreedy: Go through projects in order of approval score, adding
them to the outcome set one by one while skipping projects
making outcome infeasible

• Fmax returns feasible set with maximal approval score
• Fload proceeds in steps: at each step, chooses the project

minimizing the load (cost) carried by the worst-off voter

6



Axioms

Proportionality
All projects in set S are selected if for all k ∈ R :
|{i∈N;Ai=S}|

n ≥ ck(S)
bk

Weak axiom only guarantees this if |S| = 1

(Approximate) Strategyproofness
For truthful ballot S∗

i , F (A) 6�i F (A−i ,S∗
i )

Approximate: for some p ∈ P : F (A) 6�i F (A−i ,S∗
i ) ∪ {p}

Here we define different preferences �i : prefer a Superset, or also
an outcome that is better w.r.t. all resources (Paretian)

Actually, our definitions are parameterized by a set R of relevant
resources, giving more fine-grained analysis (and slightly different
definitions)
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Results

Subset Preferences Paretian Preferences Paretian Preferences if R = {1 . . . d}
Greedy
Max
Load Balancing

Approximate Strategyproofness

Strong Weak
Greedy
Max
Load Balancing

Proportionality

No mechanisms are strategyproof (even for d = 1)
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Results

An impossibility result:

Theorem
Let d > 1, m > bk > 3 for some resource k, then no mechanism
can guarantee both weak proportionality and strategyproofness
against Paretian voters for d-resource PB scenarios with budgets
(b1, . . . , bk , . . . bd) and m projects.

Basecase is generated using a SAT-solving approach
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Computational analysis

Fgreedy and Fload are polytime computable

For Fmax multiple decision problems:
Definition (MaxAppScore)
Instance: PB scenario 〈P , c,b〉, profile A, target K ∈ N

Question: Is there feasible S ⊆ P with approval score at least K?

(MaxAppScored restricts to d-resource scenarios)

MaxAppScore1 (and Fmax in single-resource case) is polytime
computable per Talmon & Faliszewski (2019);

MaxAppScore is strongly NP-hard;

MaxAppScored for d > 2 is weakly NP-hard, and Fmax is
pseudo-polytime computable with restriction to d
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Wrapping up

Summing up:

• Initiated the systematic study
of PB with multiple resources

• New setting has significantly
increased expressive power

• Mechanisms from
single-resource setting largely
carry over nice axiomatic &
algorithmic properties

What’s next?

• Strengthen the results to e.g.
other voter preferences, and
other notions of proportionality

• Explore the introduction of
negative costs

• Eventually implement
multi-resource PB in real-world
PB exercises

Thank you!
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The load-balancing mechanism

For set R ⊆ {1, . . . , d} of relevant resources

Build outcome S in rounds. At each round, add a project that
maintains feasibility of outcome S and minimises maxk∈R yk ,
where yk is computed by linear program with variables xi,k,p

min yk where yk >
1

bk
·
∑
p∈S

xi,k,p for all i ∈ N with

∑
i∈N

1p∈Ai · xi,k,p = ck(p) for all p ∈ S, and xi,k,p > 0

Intuitively, xi,k,p is the part of the cost ck(p) ’shouldered’ by voter i
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