# Extending Blockmodel Analysis to Higher-Order Models of Social Systems 

Nima Motamed Utrecht University<br>Joint work in progress with Daniel Cicala, Rachel Hardeman Morrill, Nikola Milećević, Nina Otter, and Emily Roff

JMM 2023
January 2023

## Plan for today

I. Blockmodel analysis for networks
II. Blockmodel analysis through coalgebra
III. Relating blockmodel and role analysis through coalgebra

## Part I

Blockmodel analysis for networks

## The idea

Study social positions: collections of actors who are similar to each other, usually in terms of their ties.

## k-graphs

## Definition

A $k$-graph consists of a (finite) set $V$ of vertices and a family $R_{1}, \ldots, R_{k}$ of binary relations on $V$.

## Example

In the 2-graph on the right, perhaps the vertices are employees in a firm, $R_{1}$ is the 'boss of' relation and $R_{2}$ is the 'collaborator of' relation.


This running example is from Otter \& Porter (2020).

## Basics of blockmodel analysis

Definition(ish) The aim of blockmodel analysis is to identify a partition $\bar{V}$ of $V$ whose elements are positions, and relations $\bar{R}_{i}$ on $\bar{V}$ containing information about the original $R_{i}$. Such $\left(\bar{V}, \bar{R}_{i}\right)_{1 \leqslant i \leqslant k}$ is called a blockmodel for $\left(V, R_{i}\right)_{1 \leqslant i \leqslant k}$.

## Basics of blockmodel analysis

Definition(ish) The aim of blockmodel analysis is to identify a partition $\bar{V}$ of $V$ whose elements are positions, and relations $\bar{R}_{i}$ on $\bar{V}$ containing information about the original $R_{i}$. Such $\left(\bar{V}, \bar{R}_{i}\right)_{1 \leqslant i \leqslant k}$ is called a blockmodel for $\left(V, R_{i}\right)_{1 \leqslant i \leqslant k}$.

Blockmodels are usually formed by considering one of three types of equivalence relations encoding which actors are similar: structural equivalence, automorphic equivalence, and regular equivalence.

## Structural and automorphic equivalence

Definition Vertices $u, v \in V$ are structurally equivalent if for every $w \in V$ and $1 \leqslant i \leqslant k$ :

$$
\left[u R_{i} w \Longleftrightarrow v R_{i} w\right] \text { and }\left[w R_{i} u \Longleftrightarrow v R_{i} u\right]
$$

That is, if they have the same ties to all other vertices. Vertices $u, v \in V$ are automorphically equivalent if there is a k-graph automorphism $f$ such that

$$
f(u)=v
$$

## Structural equivalence example

Taken apart into 1-graphs:


## Regular equivalence

Definition An equivalence relation $B \subseteq V \times V$ is a regular equivalence if for every $(v, w) \in B$ and $1 \leqslant i \leqslant k$ :

- If $v R_{i} u$, then there is $x$ such that $w R_{i} x$ and $(u, x) \in B$, and
- If $u R_{i} v$, then there is $x$ such that $x R_{i} w$ and $(u, x) \in B$.

Under a regular equivalence, equivalent actors are equivalently related to equivalent actors.

More general than the other two

Regular equivalence example


## Bisimulations

Regular equivalences are (essentially) the same as what is called a bisimulation equivalence, well-known in modal logic and many parts of theoretical computer science

## Bisimulations

Regular equivalences are (essentially) the same as what is called a bisimulation equivalence, well-known in modal logic and many parts of theoretical computer science

Definition A bisimulation between k-graphs $\left(V, R_{i}\right)$ and $\left(V^{\prime}, R_{i}^{\prime}\right)$ is a relation $B \subseteq V \times V^{\prime}$ such that for all $\left(v, v^{\prime}\right) \in B$ and $1 \leqslant i \leqslant k$ :

- If $v R_{i} u$, then there is $u^{\prime} \in V^{\prime}$ such that $v^{\prime} R_{i}^{\prime} u^{\prime}$ and $\left(u, u^{\prime}\right) \in B$, and
- If $v^{\prime} R_{i}^{\prime} u^{\prime}$, then there is $u \in V$ such that $v R_{i} u$ and $\left(u, u^{\prime}\right) \in B$

If $B$ is an equivalence relation as well, we say it is a bisimulation equivalence.

## Bisimulations

Regular equivalences are (essentially) the same as what is called a bisimulation equivalence, well-known in modal logic and many parts of theoretical computer science Definition A bisimulation between k-graphs $\left(V, R_{i}\right)$ and $\left(V^{\prime}, R_{i}^{\prime}\right)$ is a relation $B \subseteq V \times V^{\prime}$ such that for all $\left(v, v^{\prime}\right) \in B$ and $1 \leqslant i \leqslant k$ :

- If $v R_{i} u$, then there is $u^{\prime} \in V^{\prime}$ such that $v^{\prime} R_{i}^{\prime} u^{\prime}$ and $\left(u, u^{\prime}\right) \in B$, and
- If $v^{\prime} R_{i}^{\prime} u^{\prime}$, then there is $u \in V$ such that $v R_{i} u$ and $\left(u, u^{\prime}\right) \in B$

If $B$ is an equivalence relation as well, we say it is a bisimulation equivalence.
A relation $B \subseteq V \times V$ is a regular equivalence iff it is a bisimulation equivalence on both $\left(V, R_{i}\right)$ and $\left(V, R_{i}^{\text {op }}\right)$

## Positional reductions

Definition A positional reduction of a $k$-graph ( $V, R_{i}$ ) consists of a k-graph ( $\bar{V}, \overline{R_{i}}$ ) and a surjective function $\phi: V \rightarrow \bar{V}$ such that, for each $i$,

- If $v R_{i} u$, then $\phi(v) \bar{R}_{i} \phi(u)$ ( $\phi$ is a k-graph homomorphism)
- If $\phi(v) \bar{R}_{i} u^{\prime}$, then there is $u \in V$ such that $v R_{i} u$ and $\phi(u)=u^{\prime}$ ( $\phi$ is locally surjective)
Positional reductions are precisely the blockmodels obtained through bisimulation equivalences


## Questions

This is all well and good, but how can we extend this properly to richer, possibly higher-order structures?

## Part II

## Blockmodel analysis through coalgebra

## Universal coalgebra

Bisimulations are a central object of study in the theory of universal coalgebra

## Universal coalgebra

Bisimulations are a central object of study in the theory of universal coalgebra Definition Let $T$ be a functor $\mathbf{C} \rightarrow \mathbf{C}$. A $T$-coalgebra is a pair $\mathbf{X}=(X, X \xrightarrow{\xi} T X)$ where $X$ is an object of $\mathbf{C}$ and $\xi$ is a morphism in $\mathbf{C}$. A $k$-colored $T$-coalgebra $\left(X, \xi_{i}\right)$ consists of an object $X$ of $\mathbf{C}$ with a $k$-indexed family of morphisms $X \xrightarrow{\xi_{i}} T X$.

You can think of these as generalized transition systems.
A $k$-colored $T$-coalgebra morphism $f: \mathbf{X} \rightarrow \mathbf{X}^{\prime}$ is a morphism $f: X \rightarrow X^{\prime}$ in $\mathbf{C}$ such that for all $i$ :

$$
\begin{aligned}
& X \xrightarrow{f} X^{\prime} \\
& \xi_{i} \downarrow \xi_{i}^{\prime} \\
& T X \underset{T f}{\longrightarrow} T X^{\prime}
\end{aligned}
$$

## k-graphs as coalgebras

Writing $\mathcal{P}:$ Set $\rightarrow$ Set for the (covariant) powerset functor:

$$
\mathcal{P}(V \times V) \cong(V \rightarrow \mathcal{P} V)
$$

So k-graphs $\left(V, R_{i}\right)$ are $k$-colored $\mathcal{P}$-coalgebras
The $k$-colored $\mathcal{P}$-coalgebra morphisms are almost positional reductions: they are potentially non-surjective, but locally surjective k-graph homomorphisms. Surjective $\mathcal{P}$-coalgebra morphisms are precisely positional reductions.

## Social systems as coalgebras

## Example

Let $\mathbb{H}=(H, \oplus, \otimes, e)$ be a 'rg' / 'hemiring': $(H, \oplus, e)$ is a commutative monoid, $(H, \otimes)$ is a semigroup with absorbing element $e$, and $\otimes$ distributes over $\oplus$. The $\mathbb{H}$-valuation functor ${ }^{1} \mathbb{H}_{\omega}:$ Set $\rightarrow$ Set is defined as

$$
\begin{gathered}
\mathbb{H}_{\omega} X=\{r: X \rightarrow H \mid r(x) \neq e \text { for finitely many } x\} \\
\mathbb{H}_{\omega}\left(X \xrightarrow{f} X^{\prime}\right)(r)=x^{\prime} \mapsto \bigoplus_{x \in f^{-1\left(x^{\prime}\right)}} r(x)
\end{gathered}
$$

[^0]
## Social systems as coalgebras

## Example

Let $\mathbb{H}=(H, \oplus, \otimes, e)$ be a 'rg' / 'hemiring': $(H, \oplus, e)$ is a commutative monoid, $(H, \otimes)$ is a semigroup with absorbing element $e$, and $\otimes$ distributes over $\oplus$. The $\mathbb{H}$-valuation functor ${ }^{1} \mathbb{H}_{\omega}:$ Set $\rightarrow$ Set is defined as

$$
\begin{gathered}
\mathbb{H}_{\omega} X=\{r: X \rightarrow H \mid r(x) \neq e \text { for finitely many } x\} \\
\mathbb{H}_{\omega}\left(X \xrightarrow{f} X^{\prime}\right)(r)=x^{\prime} \mapsto \bigoplus_{x \in f-1\left(x^{\prime}\right)} r(x)
\end{gathered}
$$

$k$-colored $\mathbb{H}_{\omega}$-coalgebras are ' $k$-colored graphs weighted in $\mathbb{H}$ ', or (essentially) square matrices valued in $\mathbb{H}^{k}$

[^1]
## Social systems as coalgebras

For the two-element Boolean algebra 2 , we get $2_{\omega} \cong \mathcal{P}_{\omega}$ with $\mathcal{P}_{\omega}$ the finitary powerset functor, so for all practical purposes, $k$-colored $2_{\omega}$-coalgebras are k-graphs

Other choices of $\mathbb{H}$ give us k-graphs with richer structure, encoding e.g. the strength of ties between actors, or conditions on there being a tie between them

## Social systems as coalgebras

For the two-element Boolean algebra 2 , we get $2_{\omega} \cong \mathcal{P}_{\omega}$ with $\mathcal{P}_{\omega}$ the finitary powerset functor, so for all practical purposes, $k$-colored $2_{\omega}$-coalgebras are k-graphs

Other choices of $\mathbb{H}$ give us k-graphs with richer structure, encoding e.g. the strength of ties between actors, or conditions on there being a tie between them

Coalgebras for the composition $\mathcal{P P}$ are directed hypergraphs: a set $V$ together with a set $E \subseteq V \times \mathcal{P} V$ of hyperedges with a single 'head'

## Bisimulations on coalgebras

Many notions of bisimulations in universal coalgebra, but the most primitive (called Aczel-Mendler bisimulation) considers bisimulations to be 'the' relations of coalgebras.

## Bisimulations on coalgebras

Many notions of bisimulations in universal coalgebra, but the most primitive (called Aczel-Mendler bisimulation) considers bisimulations to be 'the' relations of coalgebras. In the case where $\mathbf{C}=$ Set:

Definition For a $k$-colored $T$-coalgebra $\mathbf{X}$, an equivalence relation $B \subseteq X \times X$ is a $T$-bisimulation equivalence on $\mathbf{X}$ if there exists $k$-colored $T$-coalgebra structure $\beta_{i}: B \rightarrow T B$ making $B$ into a span on $\mathbf{X}$, i.e. such that for all $i$ :


## Bisimulations on coalgebras

Having bisimulations being spans of coalgebras allows us to nicely do blockmodel analysis: the blockmodel obtained from a $T$-bisimulation equivalence $B \subseteq X \times X$ can be computed as the coequalizer of $B$ as a span in the category of $k$-colored $T$-coalgebras. (And colimits of coalgebras can be very concretely computed from colimits in the underlying category!)

Plus, (analogous to the first isomorphism theorem of algebra), we have that surjective $T$-coalgebra morphisms (generalizing positional reductions) out of a $T$-coalgebra $\mathbf{X}$ are precisely the results of taking coequalizers of bisimulation equivalences on $\mathbf{X}$.

## Bisimulations on coalgebras

We can concretely characterize $\mathbb{H}_{\omega}$-bisimulation equivalences. They are equivalence relations $B \subseteq X \times X$ such that for all $\left(x, x^{\prime}\right) \in B, 1 \leqslant i \leqslant k$, and $B$-equivalence classes $U \subseteq X$ :

$$
\bigoplus_{u \in U} \xi_{i}(x)(u)=\bigoplus_{u \in U} \xi_{i}\left(x^{\prime}\right)(u)
$$

## Bisimulations on coalgebras

We can concretely characterize $\mathbb{H}_{\omega}$-bisimulation equivalences. They are equivalence relations $B \subseteq X \times X$ such that for all $\left(x, x^{\prime}\right) \in B, 1 \leqslant i \leqslant k$, and $B$-equivalence classes $U \subseteq X$ :

$$
\bigoplus_{u \in U} \xi_{i}(x)(u)=\bigoplus_{u \in U} \xi_{i}\left(x^{\prime}\right)(u)
$$

A bisimulation equivalence on a $\mathcal{P} \mathcal{P}$-coalgebra / directed hypergraph $\mathbf{X}$ is an equivalence relation $B$ such that for all $\left(x, x^{\prime}\right) \in B$ :

- If $(x, U)$ (with $U \subseteq X$ ) is a hyperedge starting from $x$, then there exists a hyperedge $\left(x^{\prime}, U^{\prime}\right)$ such that
- for all $u \in U$ there is $u^{\prime} \in U^{\prime}$ with $\left(u, u^{\prime}\right) \in B$,
- for all $u^{\prime} \in U^{\prime}$ there is $u \in U$ with $\left(u, u^{\prime}\right) \in B$,
- If $\left(x^{\prime}, U^{\prime}\right)$ (with $U^{\prime} \subseteq X$ ) is a hyperedge starting from $x^{\prime}$, then there exists a hyperedge $(x, U)$ such that
- for all $u \in U$ there is $u^{\prime} \in U^{\prime}$ with $\left(u, u^{\prime}\right) \in B$,
- for all $u^{\prime} \in U^{\prime}$ there is $u \in U$ with $\left(u, u^{\prime}\right) \in B$,


## Part III

## Relating blockmodel and role analysis through coalgebra

## Role analysis on $k$-graphs

In role analysis, we study social roles: patterns of ties, or compound ties, between actors or positions.

## Role analysis on $k$-graphs

In role analysis, we study social roles: patterns of ties, or compound ties, between actors or positions.

Definition The semigroup of roles in a $k$-graph $\left(V, R_{i}\right)$ is the semigroup generated by the set $\left\{R_{1}, \ldots, R_{k}\right\}$ under composition of relations. Denote it Role $(V)$. The elements of $\operatorname{Role}(V)$ are called roles or compound ties.

A role reduction for $\left(V, R_{i}\right)$ consists of a semigroup $S$ and a surjective semigroup homomorphism Role $(V) \rightarrow S$.

## Functoriality of role analysis on $k$-graphs

Let Graph $_{\text {Surj }}^{k}$ denote the category of $k$-graphs and positional reductions (i.e. blockmodels obtained from bisimulation equivalences), and let SemiGroupsurj denote the category of semigroups and surjective homomorphisms.

Theorem (Otter \& Porter, 2020)
The assignment of the semigroup of roles induces a functor

$$
\text { Role : } \mathbf{G r a p h}_{\text {Surj }}^{k} \rightarrow \text { SemiGroup }_{\text {Surj }}
$$

The theorem tells us that every positional reduction induces a canonical role reduction, and these behave well under 'nesting'.

## Composition of social systems through coalgebra

The coalgebraic framework allows us to also naturally approach the associative composition of more general social systems.

## Composition of social systems through coalgebra

The coalgebraic framework allows us to also naturally approach the associative composition of more general social systems.

If the functor $T$ has the structure of a monad, then $T$-coalgebra structures on an object $X$ are endomorphisms on $X$ in the Kleisli category of $T$ (denoted $\mathbf{C}_{T}$ ). Taking the powerset monad, we get that binary relations on $X$ are the same thing as elements of the endomorphism monoid $\operatorname{Set}_{\mathcal{P}}(X, X)$.

Well-known fact Composition in $\boldsymbol{S e t}_{\mathcal{P}}$ is composition of relations.
So one way to compose social systems is by describing them as coalgebras for a monad!

## Functorial role analysis for coalgebras

Definition Let $\mathbb{T}$ be a monad on $\mathbf{C}$, and $\mathbf{X}$ a $k$-colored $T$-coalgebra. The semigroup of $\mathbb{T}$-roles in $\mathbf{X}$ is the subsemigroup of $\mathbf{C}_{\mathbb{T}}(X, X)$ generated by $\left\{X \xrightarrow{\xi_{i}} T X \mid 1 \leqslant i \leqslant k\right\}$. Denote it Role $(\mathbf{X})$.

## Functorial role analysis for coalgebras

Definition Let $\mathbb{T}$ be a monad on $\mathbf{C}$, and $\mathbf{X}$ a $k$-colored $T$-coalgebra. The semigroup of $\mathbb{T}$-roles in $\mathbf{X}$ is the subsemigroup of $\mathbf{C}_{\mathbb{T}}(X, X)$ generated by $\left\{X \xrightarrow{\xi_{i}} T X \mid 1 \leqslant i \leqslant k\right\}$. Denote it $\operatorname{Role}_{\mathbb{T}}(\mathbf{X})$.
Let $T$ Coalgsurj ${ }^{k}$ denote the category whose objects are $k$-colored $T$-coalgebras and whose morphisms are $k$-colored $T$-coalgebra morphisms that are epis in $\mathbf{C}$ (generalizing positional reductions).

## Theorem

The assignment of the semigroup of $\mathbb{T}$-roles extends to a functor

$$
\text { Role }_{\mathbb{T}}: \mathbb{T} \text { Coalg }{ }_{\text {Surj }}^{k} \rightarrow \text { SemiGroup }_{\text {Surj }}
$$

Taking $\mathbb{T}$ to be $\mathcal{P}:$ Set $\rightarrow$ Set recovers Otter \& Porter's theorem.

## Role analysis for coalgebras

We actually don't need a monad - a semimonad suffices, i.e. an endofunctor $T$ with an associative multiplication $\mu: T T \Rightarrow T$.

We can equip $\mathbb{H}_{\omega}$ with semimonad structure by putting

$$
\mu_{X}\left(W \in \mathbb{H}_{\omega} \mathbb{H}_{\omega} X\right)=x \in X \mapsto \bigoplus_{r \in \mathbb{H}_{\omega} X}(W(r) \otimes r(x))
$$

Considering $\mathbb{H}_{\omega}$-coalgebras as matrices, the composition given by this $\mu$ is essentially matrix multiplication.

In case $\mathbb{H}=2$, this is the usual multiplication on the (finitary) powerset functor

## Role analysis for coalgebras

Denoting the multiplication on $\mathcal{P}$ by $\nu$, we have at least two multiplications on $\mathcal{P} \mathcal{P}$ :

$$
\mu_{X}^{1}=\mathcal{P} \nu_{X} \circ \mathcal{P} \mathcal{P} \nu_{X}, \mu_{X}^{2}=\nu_{\mathcal{P} X} \circ \nu_{\mathcal{P} \mathcal{P} X}
$$

Here it becomes important that we work with semimonads: by Klin \& Salamanca (2018), $\mathcal{P} \mathcal{P}$ does not admit any monad structure.

## Wrapping up

There's still a lot to do here:

- Apply and interpret the analyses developed here on real world data
- Consider more nuanced notions of similarity between actors: maybe two actors are only similar to some extent. There is a theory of coalgebra developed over metric-enriched categories, in which we can reason about the behavioural distance of actors
- We are not only interested in directed hypergraphs, but also e.g. simplicial complexes. Using locally surjective homomorphisms, simplicial complexes form a full subcategory of $\mathcal{P} \mathcal{P}$-coalgebras. Can we develop associative and functorial role analysis for them?
- The functoriality theorem can be stated much more generally in terms of so-called semipromonads: semimonads in the bicategory of profunctors. Can we fit other composition operations (not arising from semimonads) into this framework?


[^0]:    ${ }^{1}$ Terminology from Bonchi et al. (2011)

[^1]:    ${ }^{1}$ Terminology from Bonchi et al. (2011)

